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Abstract— The Tropospheric Emission Spectrometer
(TES) Science Data Processing System (SDPS) is being
designed and implemented using a Framework to
encapsulate common components, provide abstract
interfaces to hardware-dependent features, increase
maintainability and greatly reduce the burden on science
algorithm development teams. The requirements and
architectural design of the TES SDPS Framework were
initially presented at the IEEE Aerospace 2000 conference
in A Framework-Based Approach to Science Software
Development (Larson, et al.). This paper reviews the
Framework, outlines the detailed designs derived from the
architectural design, and discusses the major components
which have been implemented to date. We also discuss
various tools and techniques used during implementation,
including our extensive use of the Unified Modeling
Language (UML), round-trip engineering, and the
inclusion of 3“-party software libraries. Finally, we
present our observations on the processes and results to
date, and our near- and long-term future plans and goals
for the TES SDPS Framework.

TABLE OF CONTENTS

1. INTRODUCTION

2. OVERVIEW

3. FRAMEWORK COMPONENTS
4. ISSUES

5. SUMMARY

6. ACKNOWLEDGEMENTS

7. REFERENCES

8. BIOGRAPHIES

{
Now at Investinent Technology Group. Inc.

1. INTRODUCTION

The Tropospheric Emission Spectrometer (TES) is a
Fourier Transform Spectrometer scheduled to fly on the
Earth Observing System (EOS) Aura spacecraft in June
2003. The project is managed by NASA’s Jet Propulsion
Laboratory (JPL). With a nominal six-year mission, the
TES instrument will provide the world’s first three-
dimensional global data set of tropospheric ozone and its
precursors. Data processing activities are planned to
continue through at least June 2012, and will likely extend
considerably beyond that time.

TES is a state-of-the-art instrument in terms of its
combined performance, resolution and operational
capabilities. The instrument will produce over 8TB of raw
data, and an additional 25 TB of processed data each year.
Evolution of the algorithms, and the production software
that implements them, is expected to continue throughout
the mission, and accelerate in the first months after
launch. Data processing will be performed by a
production facility located in Pasadena, CA. The TES
Science Investigator-Led Processing System (SIPS) will
be designed, built and operated by Raytheon Information
and Science Systems under contract to JPL.

The TES project team is responsible for developing and
delivering processing software to the production facility,
and for providing operational support for data quality
monitoring and anomaly investigation. The data products
produced in the SIPS will be delivered electronically to
the NASA Langley Research Center (LaRC) Distributed
Active Archive Center (DAAC), an element of the EOS
Data and Information System (EOSDIS).



The production environment is a UNIX-based planning
and scheduling system. The system places few code-level
restrictions on delivered science software. However, the
plan to operate the facility round-the-clock utilizing only
prime shift staffing places significant requirements for
automation and reliability on the science software.

Scientific research, software development, and operational
support activities will be based in the Science Computing
Facility (SCF) located at JPL. Past experience with remote
sensing project suggests that unforeseen events in
instrument calibration and on-orbit algorithm performance
will necessitate the rapid development of many new
applications. The ability to respond to these events in a
timely manner and within budget is a major goal of the
system design approach.

As part of the EOS program, TES is required to deliver all
data products to the EOSDIS, this places additional
requirements on the system in terms of data formats and
metadata production. In order to reduce cost, TES is
considering the use of a number of third party software
packages for inclusion on the delivered system. These
include NASA-supplied toolkit routines for data format,
metadata, ephemeris, geolocation and mapping functions,
freely available libraries for numerical processing, linear
algebra support, and command line processing, and
several commercial, off-the-shelf software packages,
including a commercial database.

The extreme reliability, maintainability and reusability
constraints placed on the TES software development
effort, coupled with the realities of NASA science budgets
both now and in the future, the project explored ways to
reduce development costs while ensuring high compliance
with those constraints. Further, it became clear that
considerable new functionality would need to be added
throughout the project lifecycle in response to science
team discoveries. One key component of meeting these
goals was the adoption of a framework for software
development and science algorithm implementation.

The decision to adopt a framework-based approach was a
strategic one, intended to fulfill the need for reduced cost,
and a more robust, maintainable system. Along with the
decision to develop a framework, the project adopted an
object-oriented (OO) design approach and' selected the
C++ language. The framework decision was thus part of
an overall strategy to leverage OO technology and modern
approaches to reuse and development.

At the 2000 IEEE Aerospace Conference, Larson, Watson
and Thobhani [1] presented the architectural design and
implementation plan for the framework subsystem. This
paper will discuss the current status of the TES SDPS
Framework implementation, the architectural and detailed
design issues which arose¢ during the last year’s

development, and near- and long-term plans for the
completion and delivery of the Framework. We will also
discuss our experiences with object-oriented design
techniques, the Unified Modeling Language (UML), and
various tools and 3"-party packages.

2. OVERVIEW

The current design concept for the production software
system is shown in Figure 1. The boxes labeled “PGE’s”
represent units of execution that include staging,
processing and destaging steps within the production
environment. The actual data flow is shown in Figure 2.
The processing flow in the SCF (not shown) is more
complex, but less formalized. It is expected to comprise a
few dozen applications in the year 2002 time frame. As
discussed above, the need to develop SCF applications
rapidly is a major driver in our decision to develop a
framework. However, we will focus much of our
discussion on the production system, as it is more well-
defined, and highlights the major features of the
framework satisfactorily.

The total system size is expected to be roughly 500,000
lines of code, including comments. We include comments
in system sizing, as we have found that they represent a
significant portion of the development work, as well as
comprising one of the most important system
documentation records.

The production system design is based on an EOS-
mandated demarcation of processing into levels. The basic
unit of processing is a 1-day data set (also known as a
global survey cycle (GSC)), which is received every two
days (the remaining day is reserved for special science
observations, which will not be discussed here). For
details of the specific level processing requirements, the
interested reader is referred to another paper in this
session, Overview of the Tropospheric Emission
Spectrometer Ground System Development, by S. Larson
and R. Beer.

The framework is being developed to support the system-
wide functionality summarized in Table 1. As of this
writing, the core elements necessary to support basic end-
to-end instantiation of Product Generation Executables
(PGEs) and data flow simulation have been designed,
implemented and integrated. This includes the PGE
infrastructure, parameter handling, exception handling and
File I/O class hierarchies. We are currently in the process
of designing the metadata and logical data object
hierarchies. Design and implementation of process
control class structures is awaiting a decision as to the
ultimate SIPS architecture. Finally, we have successfully
reverse engineered (via Rational Rose’s toolset) several
3" party packages, such as RogueWave’s tools.h++,
math.h++ and lapack.h++ packages.



The complete set of packages being provided by the TES
SDPS Framework is shown in Figure 3.

PGE Infrastructure An application skeleton for a PGE
executable,

Parameter Handling Support for parameters from
files, environment, command lines.

Exception Handling Classes and conventions for
handling exceptions.

File I/0 Support for I/O to/from all files in the system.
Format support for HDF-EOS, HDF5, ASCII and
native binary file types.

Data Types 1/O support in terms of high-level data
types. Support for specific data product file
organizations.

Metadata Support for EOS standard metadata output.
Database Support C++ API support for commercial
database application.

Multiprocessing/Multithreading Threaded application
interfaces.

COTS Support for linear algebra, mathematical
functions, specialized optimization and Fourier
transforms, other functions. Additionally, other 34
party packages may be included.

Table 1. Summary of Framework Requirements

The following section details the design and
implementation of the core framework components which
have been implemented to date, as well as those which are
currently being developed in anticipation of our first
internal end-to-end system test (currently scheduled for
early in 2001).

3. FRAMEWORK COMPONENTS

PGE Infrastructure: Algorithm/Environment Interface

The primary interface between the science algorithm and
the SDPS environment is through a set of objects called
the Environment, the TES Algorithm Interface (TAI) and
the TES Algorithm. The environment class provides a
means to isolate environment-specific elements, including
interfaces directly to the operating system, and remove the
possibility of the science algorithm development teams
creating system-dependent code. The purpose of the TAI
is to encapsulate and abstract all information from the
external environment, and make it available to an
algorithm in a clean, transportable manner. Ideally, this
architecture should completely isolate the algorithm itself,
and consequently the algorithm developers, from any
system-specific details. Additionally, it provides a clean,
portable and extensible interface between the algorithm
and those items dependent upon the operating
environment, such as files, logs, process control, etc. One

view of the Environment class hierarchy is shown in
Figure 4.

It should be noted that in many cases, we have multiple
diagrams for the design and implementation of our class
hierarchies. Indeed, this is a powerful feature of our UML
modeling tool, and we use it extensively to evaluate
designs in different contexts. In this paper, we will
usually present only a single view of a component or
components.

The Environment class hierarchy is a singleton object (cf.
Gamma, et al., [2]) whose primary tasks are to pass
command line information regarding parameters to the
parameter handling object, and to execute the TAI

Additionally, the Environment class provides a means for
the algorithm to output messages to a console or operator.

The TAI executes two major tasks: instructing the
parameter handling mechanism to begin parsing (starting
from the command line); and it then creates an instance of
a specific science data processing algorithm and executes
it, providing all necessary information about the system
and the run-time parameters needed by the algorithm.

Instantiated within the TAI is a derived class of type
FW_CTES_Algorithm.  This derived class is highly
specific and usually extremely computational. The
Algorithm component is based on the Bridge design
pattern. Each level of processing will derive its own
algorithm object, and use this derived class as a template
or wrapper for including or developing the scientific data
processing code. The base class itself provides access to
those common properties and methods that are deemed
essential to ensure consistent operation of algorithm
objects throughout the data processing sequence. This
base class supports log and error file handling, exception
handling, process control, etc., via the aggregation of
objects of types specific to those items. Access to system-
or process-wide parameters is done via the TAI’s
parameter instance (itself a singleton object).

Figure 5 shows the Unified Modeling Language
representation of the Environment, Algorithm Interface
and Algorithm classes.

Parameter Handling

The Framework must be able to handle a virtually
unlimited number of parameters that may be specified as
inputs to any given algorithm. These parameters are
defined in a separate parameter definition file for each
level, as well as in coded default types for some
parameters that may used in more than one algorithm.

After parsing the definitions of all the specified
parameters, the actual values may be declared in any



number of places. The framework provides for the
instantiation of a singleton object which contains a
parameter block capable of parsing these values from the
variety of locales in which they may be set. These
parameter values can be in a parameter file, as part of the
operating system environment, specified on the command
line or set as default values by the parameter definition
itself. The parameters may be of virtually any type,
including compound types.

We currently provide support for the complete range of
numeric and alphanumeric types, as well as Boolean,
strings, and several types we term ‘“checkbox” and
“radiobutton” parameters (due to their similarity to GUI-
based radiobuttons and checkboxes, which allow one of
many and several of many Boolean values to be turned on,
respectively).  Additionally, the parameter handling
classes can support nested parameter blocks to a
predefined depth of four nested levels. This was
implemented to support separation of parameters by level,
and to prevent name collisions between disparate teams
working simultaneously.

As reported in out previous publication [1], we are heavily
employing the use of templates to provide consistent
interfaces to all parameter types. Additionally,
templatized functions provide a simplified interface with a
guaranteed correct return type as determined by the
algorithm at run-time. Figure 6 shows the current
implementation of the parameter-handling hierarchy.

Exception Handling

Although fairly straightforward, a complete, logical
exception-handling strategy is ultimately of critical
importance in the TES SDPS, due to the batch-oriented,
24-hour processing scheme which will be necessary to
process the massive amounts of data over the instrument
lifetime. In conjunction with system engineering, the
Framework team has developed a robust, tightly
constrained exception-handling process.

A consistent, manageable set of error codes and
algorithms for dealing with exception handling has been
devised as the key component of this portion part of the
Framework design. We have developed a hierarchy which
parses in a standard C++ header file containing the
definitions of the error codes and their symbolic constants,
along with a descriptive comment about each one. By
parsing these codes directly from the level-specific
processing header files, absolute consistency between the
exception-handling mechanism and the algorithmic
implementation is maintained at all times, i.e., every
exception and its descriptive message must be identified
during algorithm implementation and must, therefore, pass
our code review and testing process.

In addition, we have defined a strict protocol for the use
of exceptions throughout our system. First, unless
authorized by the cognizant engineer and the element
manager, every module must contain a try-catch block.
The simple inclusion of these blocks throughout the
system is designed to force designers and implementers to
evaluate thoroughly the types of exception-handling
required by each method. Secondly, each exception has a
clearly defined severity level, ranging from OKAY (meant
to imply that the exception can be dealt with immediately
with no ill effects on processing) to FATAL (execution
terminates immediately). All exceptions are logged
immediately upon instantiation, and the may have their
severity levels increased by an exception-handler, but not
decreased.

Figure 7 shows the current implementation of the
exception-handling hierarchy.

File Handling

One of the most important areas that the Framework must
deal with is that of file handling. It has always been a
primary goal of the TES SDPS Framework to provide
algorithm developers with a file mechanism that is
completely  transparent,  incorporating  complete
independence of algorithms on underlying OS’ file
handling mechanism. In fact, the requirements to support
HDF-EOS via a toolkit for file access is driving a very
complex file handling structure. Additionally, the nature
of the data to be stored implies a large amount of
additional complexity.

As reported in [1], the architectural design is based on a
combination of several design patterns [2]. The logical
files, which provide the interface to all subsystems, are a
straightforward dependency from a base class called
Logical File. Logical files correspond to the needs of any
given level-specific algorithm, such as Interferogram data
files, raw data packet files, etc. The logical files provide
an interface toaccess Logical Data Objects from different
Physical Files.

Physical files encapsulate environment and format-
specific details of actual data storage, isolating these
details from the application programmer. In some
instances, such as HDF format files, data may span more
than one actual disk file. It is the responsibility of the
Physical File hierarchy to handle such matters, perhaps
using 3"-party toolkits in some instances. The Physical
File hierarchy is based, therefore, on the Adapter pattern.
The relationship between these two sub-components is
maintained via a set of Bridge patterns, one bridge for
each derived logical file type.

The top-level interaction between all of these file
hierarchies is shown in Figure 8.



This diagram presents the basic hierarchy with an example
logical file, FW_CTES_Data_File, which is derived from
the logical file class. It aggregates a pointer to the base
class for physical files, FW_CTES_Data_Physical_File,
which is inherited from the physical file hierarchy. The
actual class of the physical file, in this case either HDF or
binary, is determined at runtime. However, through the
judicious use of virtual functions in the base class
hierarchies, we are assured that the proper methods are
called during read and write operations.

Data files are connected to our internal data structures
(what we term Logical Data Objects) using layout object
which describe how internal data is structured in the
physical files. As the next subsection shows, there is a
relatively simple way to implement the relationship
between actual data objects and the physical files into
which the data is written.

To date, the file handling hierarchies have been the most
problematic portions of the framework. This is due in
large part to the complexities of the EOS-mandated
Hierarchical Data Format for all products which are to be
archived at the Langley DAAC, but it is also due in part to
the requirement to isolate, to the maximum extent
possible, the algorithm developers from the details of any
single file format. The diagrams shown here are only a
small sampling of the complete UML diagrams for the file
handling package, and a complete description is beyond
the scope of this paper. Nevertheless, the essential
portions of these class hierarchies are in place at this time,
and are operationally ready for simple file handling
operations. Additionally, we are indebted to NCSA’s
publicly available C++ API for HDF, which helped us
avoid direct calls to the HDF toolkit at the lowest levels of
our implementation.

Logical Data Objects

For some types of data, the framework will provide the
class hierarchies which support those data types.
Concurrent with the development of file handling and 1/0
mechanisms, we determined the need to develop a rich
hierarchy of Logical Data Objects. These objects will
need to interface with the file structure in order to read
and write themselves to the data files. Examples of high-
level domain-related data types that must be supported are
scan, focal plane, interferogram, and spectrum. These
may be singular or combined in various ways, including
multiple instances of any one type or combinations of
types. It is highly likely that additional types will be
required as science algorithm development and scientific
data analysis proceeds during pre-launch and operational
phases. Therefore, the architecture must provide an easily
extensible model. Logical data objects are therefore
based on the Composite design pattern.

Now, in order to provide read and write capability to the
various file formats which we are supporting (nominally
HDFS5 or the forthcoming HDF-EOS based on HDF5), the
Framework provides that every logical data object has an
associated layout. This layout specifies how a data
object’s read/write calls are to be interpreted by the file
component, thus in effect providing a map from the
logical structure to physical structure. The layout for a
specific data object is provided by a class factory object,
which constructs the layout for a given file type and data
object. As a data object is traversed hierarchically for
either input or output, layout objects are retrieved from
the factory and placed on a stack. The stack is
successively popped as write operations (including
opening and closing HDF groups) are completed. These
relationships are shown in Figure 9. Additionally, it
should be noted that Logical Data Objects in fact write
themselves to output files (or read themselves from input
files) using the Data Access Interface. In fact, our main
obstacle in File Handling was to minimize data and file
format coupling. We accomplish this via Data Access
Interface.

At this writing, we are beginning the work of creating the
complete initial set of logical data objects and their layout
objects. Our initial testing of the operation of some basic
data objects during read and write operations has shown
that this is indeed a viable method, and that extensions to
additional data types or file formats will be readily
accomplished. Indeed, the need to be able to easily add
file formats is paramount, as the time until first operations
after launch is nearly over 3 years from this date, virtually
guaranteeing file format updates and revisions. That,
coupled with the long mission lifetime (in excess of 5
years) implies that we will be adding and/or changing file
format support for some time to come.

Metadata Support

The Framework team has recently begun the effort to
create metadata associated with standard data product
files. These metadata are, in fact, required by EOS to
accompany standard data products, to provide users with
search and order capabilities. It is anticipated that by the
time of publication of this paper, we will have complete
support for all types of metadata required by the SDPS.

There are three types of metadata that must be supported
by the Framework. Two of these types, inventory and
archive metadata, are supported by the EOSDIS Core
System (ECS) Product Generation System (PGS) Toolkit,
supplied to all EOS projects by NASA. The Framework
must provide a wrapper class for the Toolkit’s metadata
functions in order to simplify the task of application
developers. Toolkit-supported metadata are documented
in an interface control document between the TES project
and the Langley DAAC, utilizing an EOS standard format
definition language. This is necessary since the ingest



functions at the DAAC must be tailored to meet the TES
metadata structure. The actual metadata definition file is
automatically used by the toolkit to create a metadata set
associated with an HDF file.

Inventory metadata include instrument identification, date
and time of data acquisition, geographical location,
product type and level, and data quality metrics. Archive
metadata comprise a broader set of attributes that are
stored within the data product files. These data are not
stored in the ECS database, and thus are not available to
search tools.

The third type of metadata supported by the Framework is
instrument team-defined metadata. These data are not
supported by the PGS Toolkit. Attributes defined by the
instrument team are considerably more complex in
structure than inventory and archive metadata. It is unclear
at this time whether this metadata will be created and
accessed via a derived metadata class, or through the use
of a commercial database (see below).

Database Support

Recently, the TES SDPS team has concluded that some
form of database will be required to handle a large amount
of information which is utilized to optimize the processing
flow. It is likely, for example, that the level 1 processing
algorithms will produce thousands, if not hundreds of
thousands, of output files for a single global survey. In
order to efficiently process this data, the level 2
algorithms will need to collect the appropriate files for
many individual portions of this data, perhaps within a
geographic region, and process the complete data as a
number of small sections utilizing multiprocessing
capabilities. For reasons such as this, a database will be
required.

Since database support will be used by more than one
level processing subsystem, by definition this is a
Framework task. Fortunately, it appears that a simple
solution is at hand. The Microwave Limb Sounder (MLS)
instrument team has developed a C++ interface to an
Oracle database server, which appears to suit our needs.
The Framework team has consistently been a strong
advocate of reuse of existing code or commercial
packages, and this is a prime example of the efficacy of
such an approach.

Multiprocessing Support

Due to the extreme cpu-boundedness of portions of the
SDPS, specifically the level 2 retrieval algorithms, it will
be necessary to support both multiprocessing and
multithreading. Multiprocessing is expected to be the
domain of the SIPS scheduling and planning software.

However, it will be the responsibility of the Framework
design to incorporate multithreading support. For our
initial integration and testing, however, such support is
only in the evaluation stage, as we intend to defer design
decisions until a firm hardware architecture plan is in
place. Ultimately, we anticipate a separate class hierarchy
specifically designed to provide a simple interface to the
underlying thread control methods. The terminal object(s)
in this hierarchy may then be included in either the
abstract base class Algorithm or a level-specific derived
algorithm object thus providing thread control support to
the derived algorithm objects.

Commercial Off-the-Shelf Software and Miscellaneous
Components

Finally, we have incorporated, in some cases via Rational
Rose’s reverse engineering capability, several COTS
packages.  Chief amongst these are RogueWave’s
Standard C++ Library, tools.h++, math.h++ and
lapack.h++. This has not been without its pitfalls, as we
have continuously encountered issues related to different
compiler versions and software releases. This has been
primarily due to varying implementations of the C++
standard by different compiler vendors, including such
issues as templates, namespaces and so forth. This
appears to be an on-going issue, and the eventual choice
of SIPS hardware and operating system may have an even
greater impact on these packages. This highlights why the
Framework has a primary goal of isolating science
algorithm developers from OS, hardware and support
package changes. Modifying only the Framework in the
event of a change to any one of these will significantly
reduce the overall TES SDPS cost and risk.

4. ISSUES

Design and development tools

The Framework has been at the forefront of many of the
tools used by the SDPS development team as a whole.

Since the adoption of the Unified Modeling Language
(UML) for all portions of the system design and
implementation, Framework has been, in general, the first
major subsystem to encounter new features and/or
problems. We are using Rational’s Rose CASE tool to
develop and document the design, as well as to generate
code and reverse engineer external components. In nearly
all cases, the architectural and detailed designs have gone
extremely smoothly. However, some limitations in Rose’s
code generation capabilities have caused some
consternation. For example, as we stated above, we
would like to enforce the use of try-catch blocks in all
methods. However, it is not possible to force Rose to
generate this code within what are known as “preserved
regions”. This would be a useful feature, as we believe
that the more automated the code generation process, the
less prone to failure it is. There are numerous examples



similar to this which, although not outright failures, have
caused some additional effort to develop work-arounds.
Largely, however, the team is quite please with the tools
capabilities and robustness. The single most difficult
problem lies in reverse engineering or round-trip
engineering in Rose, but we expect that our increased
experience in the coming years will obviate some of these
concerns. It is anticipated that this will be an important
functionality, as we intend to keep our designs current
through round-trip engineering of algorithmic changes.

Design and interface documents are currently generated
automatically from the Rose model using Rational’s
SoDA documentation tool. This tool consists of a number
of Word scripts, which can be modified through a GUI,
which access the model and extract information to be
placed in a document. Thus, we are not manually creating
documents such as interface control documents, design
documents, etc. Instead, the combination of the Rose and
SoDA ensure that documentation continually remains up
to date.

Requirements are tracked using Rational’s RequisitePro
database, which again interfaces to Word for the creation
and maintenance of requirements and their trace matrices.
Again, this means that the actual document which is
created is merely a representation of the current
requirements set, which is maintained via RequisitePro in
a database.

Since Framework has been, to date, the first subsystem to
go through the full cycle from architectural design to
release, it is also the first one to be subjected to some
newer tools for test coverage analysis and code review.
We have recently acquired two of these tools, McCabe’s
IQ test analysis software, and Parasoft’s CodeWizard
coding standards analysis tool. Both of these are
relatively new acquisitions. We have just begun using
CodeWizard to analyze all Framework code for
conformance to a set of best C++ practices and in-house
coding standards. We intend to require all software to
pass this analysis before acceptance.

We continue to evaluate and acquire appropriate 3"-party
packages for inclusion in or use by the Framework
subsystem. Specifically, we are attempting to avoid the
“not invented here” syndrome and to strive for lowered
costs and increased robustness wherever possible.

Staffing
In our previous report, we stated:
“Our ability to attract and retain qualified staff is

the most important non-technical risk factor
associated with the Framework development.”

In the intervening year, the situation has not improved. In
fact, what was a small pool of candidates has shrunk
further due to the seemingly ever-increasing salaries
offered by for-profit corporations. Indeed, one of us
(Thobhani) recently left JPL for just such a position.
These competitors can offer earning potential that a
federally funded research and development center like
JPL cannot match. Staffing will likely be a continuing
area of difficulty for some time to come. Mitigation has
been accomplished so far by descoping some areas,
schedule extensions in others, and reprioritizing
components in the remainder.

5. SUMMARY

The TES project is currently in the implementation and
test phase of the development of a science software
applications  framework. Detailed design and
implementation of the first increment were completed by
the fall of 2000, and efforts are underway at integration
and system test, as well as preparations for end-to-end
data flow and operations testing. Additionally, detailed
design on the next phase of components is beginning, with
completion of those units expect by mid-2001.

Since our previous paper, several very major components
have been built and testing, and are being integrated into a
cohesive whole. Release to other subsystems to begin
their production code development is imminent, and we
are confident that the decision to implement a Framework-
based system will contribute to a significantly reduced
cost with an increased robustness.

Additionally, we are beginning to see signs that the
Framework may be reusable by other instrument teams in
the future. Such re-use would be a major factor in future
instruments’ cost reduction efforts.
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